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Introduction 

Applying mathematics to problems in biology 
and medicine has a long history dating, at 
least, to the work of Fibonacci in the thirteenth 
century. In the twentieth century mathematical 
ideas have had a profound impact on popu­
lation biology, genetics, epidemiology, and 
neurophysiology. However, in many ways, 
mathematical biology is still in its infancy. In 
such fields as molecular biology, cell biology, 
immunology, and certain branches of physi­
ology, mathematics is just beginning to be 
recognized as a useful tool [4]. 

Many exciting applications of mathe­
matics to the life sciences are today con­
cerned with nonlinear phenomena. Very 
often the relationship between variables 
is not linear by its very nature but it has 
to be treated linearly or by linear approxi­
mation because of the lack of mathe­
matical tools handling the nonlinearity 
directly. Consider, for example, the, in 
the life sciences Ubiquitous, phenomenon 
of growing (or shrinking) populations 
(human beings, animals, plants, bacteria, 
cells, etc.). For carrying out the necessary 
mathematical analysis, a common ide­
alization then is to assume a constant rate 
of growth. This is in contrast to the real 
dependence of the growth rate on the 
level of population, due to population 
pressure like crowding, a bounded envi­
ronment, food restrictions, etc. (see later 
sections for a more detailed discussion). 

During the last two decades there has 
been great success in developing new 
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mathematical concepts and tools to cope 
with nonlinear phenomena (see the ref­
erences given at the end of this paper; for 
applications in the life sciences, see es­
pecially [2, 4, 9, 11, 14, 17]). In parti­
cular, techniques were developed dealing 
with the by now famous concepts of 
"chaos", "fractals", and "cellular auto­
maton" which have already entered many 
disciplines. However, these new develop­
ments have also shown that it may be 
extremely difficult to treat even the sim­
plest kinds of nonlinearity analytically in 
a rigorous manner. Hence, another idea 
may be useful, which also arose in recent 
years and by which nonlinearities can be 
treated analytically if they come with 
certain properties of positivity, like posi­
tive and increasing levels of population. 
In contrast to what is possible for discrete 
nonlinear dynamic systems in general, the 
concept of positive dynamic systems also 
allows nonlinearities to be treated analyt­
ically in higher dimensions, i.e., for many 
variables. 

The aim of this contribution is only to 
offer a first impression for those who are 
not yet acquainted with the concepts 
mentioned, but who want to know rough­
ly what they are about. I do not proceed 
in a mathematical manner by giving defi­
nitions and theorems, but discuss simple 
examples and illustrate the underlying 
ideas. The interested reader who wants to 
know more is referred to the references 
given at the end of the paper. 



Can the Flap of a Butterfly's 
Wings Stir Up a Tornado in Texas? 

Consider a population in a fixed environ­
ment, e.g., bacteria in a Petri dish. Let Pn 
·be the number of (female) individuals of 
the population in time period n = 0, 1, .. , 
and let P be the maximum number of 
individuals which can be carried by the 
given environment. The growth factor 
( = growth rate + 1) in period n is by 
definition Wn = Pn+lIPn. If the growth 
factor equals some constant w, then only 
the following three dynamic modes are 
possible: Population increases exponenti­
ally (for w> 1) or decreases exponenti­
ally (for w < 1) or stays constant (for 
w = 1). Because of population pressure, a 
more realistic case, however, is a growth 
factor which diminishes if the population 
approaches its maximum level. Hence a 
more realistic manner of modeling the 
growth of a population would be given by 
the reproduction curve 

p.+ 1 = w.p. = a (1 -;}. 

o 

or letting Xn = Pnl P the relative popu­
lation level, by 

where a is some constant with ° <a< 4 
(another possibility of modeling the 
growth will be discussed in "The Method 
of Modeling Does Matter"). The last 
relation may be written also xn+ 1 = f(xn) 
with f(x) = aX(1 - x) being the logistic 
curve. The dynamics of this extremely 
simple model, i.e., the time evolution Xl' 

X2, X 3 , ••. of the relative population level 
starting from xo, turns out to be ex­
tremely difficult. The dynamics depends 
highly on the value of the parameter a. 
For some values (e.g., a = 1) the dy­
namics is simple, but for others 
(a> 3.57 ... ) the dynamics looks rather 
chaotic [see 5, 11, 12, 16]. A first im­
pression of the dynamic complexity can 
be obtained by app1ying the technique of 
graphic iteration as shown in Fig. 1. 

Although there exists a unique equilib­
rium (relative) population level X* differ­
ent from 0, it may happen that the 
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~ 

Fig. 1. Complex behavior shown by graphic iteration 
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successive levels Xl' X 2 , X3,'" do not 
approach this equilibrium, but show a 
very irregular behavior with respect to it. 
Beside the parameter a the dynamic 
behavior depends very sensitively on the 
initial (relative) population Xo. This is a 
characteristic feature (but not the only 
one) of chaotic dynamics or (determin­
istic) chaos. More precisely, one speaks of 
sensitive dependence on initial conditions 
with respect to a dynamic system if a 
small change in the initial condition Xo 

may cause large differences in the course 
of time. This is the issue addressed by the 
famous quote of the meteorologist Ed­
ward Lorenz given in this sections title. 
The bad implications for predicting the 
behavior of a chaotic dynamic system are 
at hand. What is surprising is that such a 
simple and completely determined mech­
anism as the logistic curve may create a 
behavior which looks very much random. 
A long time ago, the logistic curve for 
a = 4 was used to generate random num­
bers [19]. 

The Fractal Point Of View 

Nature presents itself rather differently 
from what mathematicians usually depict 
in geometry. Leaves, clouds, coasts, 
lungs, mountains, radiolaria, etc. are 
forms too complicated and too fantastic 
for describing them in terms of Euclidean 
geometry [3, 10]. Nevertheless, coping 
with these natural objects the scientist has 
to find some way to measure those ob­
jects. The difficulties of measuring 
natural forms in common terms have 
been pointed out by Benoit Mandelbrot 
(1967) in an article entitled "How long is 
the coast of Britain?" [cf. 10]. For 
measuring the true length one has to 
make the unit of measurement E smaller 
and smaller and then to take the limit case 
of all the lengths obtained. This does 
work even for curved objects when they 
are smooth enough but it does not work 
for "fractional" objects or fractals as are 
they named by Mandelbrot (for fractals 
see [1, 10, 12, 13, 15, 17]). Measuring the 
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fractional coast of Britain by making the 
unit of measurement smaller does in­
crease the length obtained to infinity, as is 
indicated in Fig. 2. 

In the article mentioned, Mandelbrot 
refers to the British scientist Lewis Fry 
Richardson who had already, in 1961, 
analyzed measurements made empirically 
for various coasts. Thereby he detected a 
magnitude not for the length of the coast 
but for the "roughness" of the coast, 
which was then called fractal dimension 
by Mandelbrot. More precisely, the 
fractal dimension measures (in the above 
example) how much the logarithm of the 
length L increases compared to an in­
crease in the logarithm of the inverse unit 
of measurement 1 IE. To put it in a 
formula, the dependence of L on E is 
given by the power law: 

L=cEl - d 

where d is the fractal dimension and c is 
some constant. The fractal dimensions 
calculated for various coasts are strictly 
greater than 1 (which is the dimension of 
a straight line) and strictly smaller than 2 
(which is the dimension of a plane). 
Today, the concepts of a fractal and of a 
fractal dimension are used to measure 
surfaces like those of lungs, blood vessel 
systems, or of materials in chemical reac­
tions. There are several possibilities in 
giving a precise definition of a fractal. A 
fractal may be defined by the fact that the 
fractal dimension does not coincide with 
the dimension in the usual sense or it 
may also be defined by its self-similarity. 
(In fact, several types of fractals have to 
be distinguished.) Another possibility 
which, moreover, is very practical in 
constructing fractals using the computer 
is the chaos game invented by Barnsley [1] 
which uses a random process as in 
Fig. 3a, b. 

Draw a (equilateral) triangle in the 
plane with vertices 1, 2, 3 as shown in 
Fig. 3 a and mark an arbitrary starting 
point in the plane. Throw a dice which is 
assumed to show the numbers 1, 2, 3 only 
because any two opposite faces ofthe dice 
are labeled with the same number. If the 



a 

.----
--
~-----

-----

.- ~--- -......----

-----
---

___ --1 

L = 4E 

Fig. 28, b. Length of a coast 

1 2 

b 

-------~,----

-'-~' . 

E 
L = 10 x - = 5E 

2 

----. 

Fig. 3. 8 The chaos game. b The Sierpinski triangle 

dice shows number n, then draw a line 
connecting the starting point with vertex 
n and obtain a new point by marking the 
middle point of it. Throw the dice again. 
If the dice shows number m, connect the 
new point obtained with vertex m by a 
line and mark on it the middle point as the 
new point. This process can be continued. 
What will be the figure formed by all the 
marked (middle) points? As it turns out, 
all these points arrange after a while on a 

classical fractal known for a long time as 
the Sierpinski triangle, shown in Fig. 3 b. 
The process described may also be consi­
dered as a dynamic system with the 
Sierpinski triangle as attractor, that is, 
the motion of the system is finally at­
tracted to the Sierpinski triangle. Fractals 
appear as attractors of nonlinear dy­
namic systems. (For the connection be­
tween fractals and dynamic systems as 
well as for an astonishing gallery of 
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beautiful fractals, see [12, 13]. The dif­
ficult question of how fractal attractors 
may be found from a statistical analysis 
of the behavior of a nonlinear system is 
nicely dealt with in [15].) There is still 
another possibility, to construct fractals 
by using cellular automata. For cellular 
automata, which are interesting in them­
selves and bear beautiful connections 
with the life sciences (e.g., Conway's 
game of life), see [2, 9, 17] and the 
contribution by Peter Plath in this 
volume. 

The Method of Modeling Does Matter 

As seen, even simple nonlinearities may 
lead to chaos. But it would be wrong to 
say that nonlinearities necessarily imply 
chaos and fractals. There exist many 
nonlinear dynamic systems exhibiting 
rather regular behavior. It has been re­
cognized that nonlinearities become tame 
if the system under consideration pos­
sesses, in addition, certain properties of 
positivity [cf. 6-8, 18]. Consider again 
the example of population growth under­
lying pressure discussed in "Can the Flap 
of a Butterfly's Wings Stir Up a Tornado 
in Texas?". The realistic picture of a 
growth factor which diminishes if popu­
lation approaches the maximum level P 

1 
1 

1+c 

y 

need not necessarily be modeled by the 
logistic curve as it was in that section. 
Another possibility of modeling this 
phenomenon is given by 

P 
Pn+ 1 = wnPn = b + P

n 
Pn 

or, in terms of the relative population 
level. Xn = Pnl P, by 

with some constants b> 0 and c = blP, 
respectively. Here, too, the growth factor 
decreases if the population increases, and 
Xn+ 1 = f(xn) with a nonlinear function 
f(x) = xl(c + x). 

Graphic iteration in Fig. 4 shows, in 
contrast to Fig. 1, that now the relative 
population levels Xl' X 2 , X 3 , •. , do finally 
approach the equilibrium level x*. Fur­
thermore, this statement holds for every 
initial position Xo different from o. (If 
Xo = 0, then the population stays at 0 
all the time.) Moreover, the dependence 
of the dynamics on the parameter c is 
also simple. For 0 < C < 1 the (relative) 
population approaches the positive 
equilibrium level x* and for 1 <c the 
population dies out. This stability in 
behavior is due to an additional property 
of positivity in the model, viz. the deriva-
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Fig. 4. Stable behavior 
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tive of f(x) = x/(c + x) remains positive 
throughout. (Related to this is the fact 
that overshooting Pn > P is admitted in 
this model but not in the first model given 
in this chapter.) The discussion shows 
that the method of modeling matters. The 
same qualitative description may be 
modeled differently in quantitative terms 
and then result in extremely different 
conclusions concerning the dynamic 
behavior, like chaotic behavior versus 
stable behavior. 

Now, the example in Fig. 4 is only a 
very simple one in the realm of positive 
discrete dynamic systems. The point in 
considering positive systems is that there 
are methods available which work also in 
higher dimensions, i.e., if many variables 
are involved [cf. 6, 8, 18]. Also, there are 
biological processes which are in a 
natural way positive systems [for 
examples, see 6, 18]. For positive systems, 
too, the attract or may be a set, not just a 
single point, although this set will be not 
very complicated, in particular not a 
chaotic or strange attractor, because of 
the properties of positivity [7]. 
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